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Abstract 

A numerical investigation is made of natural convection of an incompressible fluid in a square cavity having a 
constant-temperature cold sidewall and an opposite hot sidewall with sinusoidally-varying temperature. Comprehensive 
numerical solutions to the Navier-Stokes equations are acquired for a fixed Rayleigh number and a Prandtl number, 
Ra = lo7 and Pr = 0.7. The amplitude and frequency of the hot wall temperature oscillation are varied. The time-mean 
heat transfer in the interior as well as the amplifications of fluctuations of instantaneous heat transfer are analyzed. The 
results disclose that a large-amplitude wall temperature oscillation causes an augmentation of the time-mean heat 
transfer rate. The maximum gain of the time-mean Nusselt number in the interior occurs at the resonance frequency, at 
which maximal fluctuations of the Nusselt number are found. The mechanism for resonant enhancement of the time- 
mean heat transfer is described. (0 1998 Elsevier Science Ltd. All rights reserved. 

Nomenclature 

A(Nu) amplitude of fluctuation of Nu(t), equation (11) 
,f  dimensional frequency of the hot wall temperature 
oscillation 
g gravitational acceleration 
G(Nu) gain of the time-mean Nusselt number, equation 
(10) 
L height of the square cavity 
N Brunt-V%isWa frequency, (ccgAT,‘L)‘:’ 
Nu(t) instantaneous Nusselt number at a vertical plane, 
equation (9) 
Nu cycle-averaged value of Nu(t), equations (8) and (9) 
P? P* non-dimensional and dimensional pressures, 
p = (p* + pgz*)L3/px2RaPr 
Pr Prandlt number V/.X 
Ra Rayleigh number, Ra = agATL3/vx 

’ Current address : Supercomputer Center, Systems Engin- 
eering Research Institute, 1 Euen-dong, Yusong, Taejon 305- 
333, South Korea. 

* Corresponding author. 

S &ratification parameter, S’ = %I/+ 
T dimensional temperature 
t, t* non-dimensional and dimensional times, 
t = t*(RaPr)“’ x/L* 
U, u non-dimensional velocities in x and y  directions, 
(u, u) = (u*, v*)(RaPr)-‘I2 L/x 

u*, u* velocities in x and y  directions 
x, ,y non-dimensional horizontal and vertical coor- 
dinates. (x, y) = (x*, y*)/L 

x*, y* horizontal and vertical coordinates. 

Greek symbols 
r volumetric expansion coefficient 
At time increment for numerical calculations 
AT mean temperature difference between the hot and 
cold sidewalls, T,, - 7’, 
AT;, amplitude of the hot wall temperature oscillation 
At time step 
Ax grid spacing 
t‘ non-dimensional amplitude of the hot wall tem- 
perature oscillation, AT”,/AT 
x thermal diffusivity 
11 kinematic viscosity 
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0 non-dimensional temperature, (T- T,);( r,, - 7-J that resonance was seen at certain moderate values of 
5 non-dimensional cycle time. t = 27cf:~) frequency. In subsequent papers. .4ntohe and Lage [3,4] 
(11 non-dimensional frequency. f,?N numerically examined the effects of the Prandtl number 
4 non-dimensional stream function. u = a$/;:~, and the amplitude of the time-varying heating on the 
1‘ = -2$/&Y. convective transport in a cavity. 

Subscripts 
c cold sidewall 
h hot sidewall 
i internal gravity wave oscillation 
m frequency value at which the maximum G( Nu) occurs 
r resonance frequency [at which the maximum A(Nu) 
occurs] 
s steady state solution for the corresponding case with 
E = 0.0. 

Superscripts 
* dimensional quantity 
( ) cycle-averaged property. equation (9). 

Parallel efforts were also made on the experimental 
front. Antohe and Lage [5] conducted precision-con- 
trolled experiments for the problem setup of Lage and 
Bejan [I], Attention was focused on the influence of per- 
iodic heating on the time-mean heat transfer. For a high 
Rayleigh number based on the average heat flux, the 
oscillatory heating led to about 20% augmentation of the 
time-mean heat transfer coefficient in comparison to that 
obtained by steady heating with the same time-averaged 
heat flux. The maximum gain of the time-mean heat 
transfer was seen at a moderate frequency, which was 
interpreted to be associated with resonance. 

1. Introduction 

Natural convection in an enclosure with time-periodic 
boundary conditions has received much attention in 
recent years [l-l 51. As reviewed by Hyun [16], Fusegi 
and Hyun [l7], and Antohe and Lage [3], the increasing 
interest is attributable to the relevance of such transient 
processes in many technological applications. Typical 
examples are the solar heating varying on a daily basis, 
and the periodic energizing of electronic devices by the 
on-and-off heating and/or cooling modes. to name a few. 

Iwatsu et a/. [6] investigated convective motions of 
an incompressible fluid in a cavity with an externally- 
imposed vertical temperature difference between the top 
hot endwall and the bottom cold wall. The aim was 
to explore the enhancement of vertical heat transfer by 
applying a mechanical oscillation to the top lid. Obvi- 
ously. the heat transi‘er in this stably-stratified fluid sys- 
tem would be purely conductive if the top lid is stationary. 
Numerical results revealed the existence of resonance 
at particular frequencies of the top lid oscillation. At 
resonance frequencies. a substantial augmentation of 
heat transfer and flow fluctuations was demonstrated. 

The main question is how the periodicity of boundary 
conditions affects the time-dependent tlow and associated 
heat transfer of an enclosed fluid. A practical advantage 
is that the overall time-averaged heat transfer in the sys- 
tem may be augmented in the case of time-varying bound- 
ary conditions as compared with the heat transfer 
obtained with time-invariant boundary conditions [5-- 
8, 13-l 51. Another physically-important aspect of these 
problems is the possibility of resonance inherent to the 
system under question [l-7, 121. Resonance is a phenom- 
enon associated with the eigenmodes of a system, which 
is essentially independent of the kind of external forcing 
imposed. If  the system is exposed to an external forcing 
with the correct natural frequency. resonance takes place 
in which the eigenmodes are excited and amplified. 

A canonical configuration for confined natural con- 
vection is a sidewall-heated cavity [l&20], in which the 
horizontal heating is provided by a temperature difference 
applied between two perfectly-conducting vertical side- 
walls. Fu and Shieh [7. 81 examined thermal convection 
which was simultaneously driven by gravity and by the 
vertical vibration of the cavity. The results disclosed that 
there exists a resonant convection regime in which the 
flow and heat transfer interact with the vibration of the 
gravitational force [7]. For a relatively small Rayleigh 
number, Ra = 104, the imposed mechanical vibration pro- 
duced a substantial augmentation ofthe overall heat trans- 
fer rate at the resonance frequency [7, 81. 

The numerical work of Lage and Bejan [l] clearly 
established the presence of resonance in natural con- 
vection at high Rayleigh numbers. At one sidewall, a 
constant temperature was maintained. On the opposite 
sidewall, a heat flux, which fluctuated in a square-wave 
fashion, was prescribed. In their problem formulation, 
resonance was identified by the maxima1 amplification of 
fluctuations of the instantaneous Nusselt number at the 
centerline of the cavity. It was demonstrated numerically 

The studies of Antohe and Lage [5], Iwatsu LT~ ul. [6] 
and Fu and Shieh [7] are strongly suggestive of poten- 
tially useful applications. They imply that an external 
oscillation with properly-chosen frequencies will bring 
forth the resonance of natural convection, which results in 

an enhancement of the time-averaged heat transfer rate. 
A different type of time-varying conditions has also 

been taken into account. Yang c,t (II. [9] considered a 
sinusoidally-varying temperature condition on the hot 
sidewall of a tall rectangular cavity (height : 
width = 3 : 1). The forcing frequency was fixed and the 
range of the Rayleigh number was up to lOh. The effects 
of frequency and amplitude of sidewall temperature oscil- 
lation in a square cavity were examined by Kazmierczak 
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and Chinoda [IO], for a fixed Rayleigh number 1.4 x IO’. 
However, these works did not detect resonance because 
of the limited ranges of principal parameters covered ; in 
particular. the Rayleigh number was too low. Xia ef 
al. [I I] examined the same problem for high Rayleigh 
numbers. The impacts of the wall temperature oscillation 
on the flow stability were elucidated, but the frequency 
was set at a fixed value. The possibility of resonance was 
not a key issue in these investigations. 

Recently, Kwak and Hyun (hereinafter referred to as 
KH, [ 121) performed comprehensive numerical com- 
putations for the same problem formulation as adopted 
by Kazmierczak and Chinoda [lo]. The numerical sol- 
utions encompassed a broad range of frequency, and the 
results clearly illustrated the presence of resonance. The 
fluctuations of the Nusselt number were substantially 
amplified by the periodically-varying temperature con- 
dition with the proper resonance frequency. The physical 
mechanism of resonance was delineated by examining 
the evolutions of detailed flow and temperature fields 
over a cycle. Quantitative comparisons were conducted 
for the resonance frequency between the numerical results 
and the available theoretical predictions. The results 
show that the flow in this configuration resonates to the 
internal gravity-wave oscillations. 

top and bottom horizontal walls are thermally insulated. 
The left sidewall is kept at a constant temperature T,. 
The temperature at the right sidewall, T,,, varies with time 
at T,, = Th+AT;, sin(fi*), where AYh and f  are respec- 
tively the amplitude and frequency of the hot wall tem- 
perature oscillation. The mean temperature difference 
between the two sidewalls. AT = AT,, - T,, is positive and 
constant. The flow configuration is schematically 
described in Fig. 1. The time-varying thermal boundary 
condition at the hot vertical wall is depicted in Fig. 2. 

The governing equations are the two-dimensional 
Navier-Stokes equations for a Boussinesq fluid. These. in 
nondimensional form, are expressed as 

It is to be noted that, in the studies of KH [12]. the 
amplitude of the temperature oscillation imposed at the 
sidewall was set to be small. They used the non- 
dimensional amplitude E = 0.1, which implies that the 
amplitude of temperature oscillation at the boundary 
wall was 10% of the mean temperature difference 
between the two sidewalls. Because of this constraint, the 
cycle-averaged flow and temperature fields do not deviate 
much from those of the corresponding non-oscillating 
case with the same time-mean value. In the present study, 
the basic analysis of KH [l2] is extended to the cases 
when the amplitude of the temperature oscillation at the 
boundary wall is finite. The aim is to explore the changes 
in time-averaged heat transfer rate in the cavity especially 
when the external thermal forcing is applied at the proper 
resonance frequency. In order to focus on the effects 
of amplitude of the external thermal forcing, numerical 
solutions are obtained for values of E up to c; = I .O with 
Ru and Pr fixed. A large value of Ra, RQ = 10’. is chosen. 
Guided by the earlier studies [5, 121, Pr is selected to be 
0( I), which has been known to give rise to pronounced 
results of resonance. It is shown that, as observed in the 
prior investigations [5-81, the time-averaged heat transfer 
in the present configuration is altered appreciably by an 
application of large-amplitude oscillatory thermal forc- 
ings at the boundary. 

Fig. 1. Schematic diagram of the flow configuration 

t + AT,' sin(ft*) 

2. The numerical model I I I I - 
Time 

Consider a square cavity filled with an incompressible 
Boussinesq fluid having constant physical properties. The 

Fig. 2. Time-dependent temperature boundary conditions at the 
vertical sldewalls. 
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= -$+e+(gy2($+$) (2) 

a0 a 
~+@9)+~(ve) = (&>” ($+$) (3) 

g+!E=,. 
ox ay 

In the above, non-dimensionalization was effectuated by 
using L, NL and, l/N as reference scales for length, 
velocity, time, respectively. Here, N is the Brunt-W&ala 
frequency, i.e., N2 = crgAT/L. The temperature was non- 
dimensionalized as f3 = (T- T,)/AT. The relevant dimen- 
sionless parameters are the Rayleigh number, Ru = 
clgATL’/vx; the Prandtl number, Pr = v/x : the non- 
dimensional amplitude of thermal forcing, c = ATh/AT; 
and the non-dimensional frequency, cu = ,flN. 

The boundary conditions are 

u=t,=~=O aty=O,] 
ay (5) 

u=u=O=O atx=O (6) 
u=v=O 0= l+Esin(wt) atx= 1. (7) 

A finite-volume procedure based on the SIMPLER 
algorithm [21] was employed to solve the system of equa- 
tions (l)-(4). The numerical accuracy of the present 
method is O(At,Ax2), where At and Ax are the time 
step and grid spacing. The present numerical model was 
verified by reproducing the results of Lage and Bejan 
[l] and other benchmark configurations. The numerical 
methodologies were described in detail in KH [ 121. 

For all the computations, a grid with (82 x 62) mesh 
points in the (x x JJ) domain was used. Grid stretching 
was performed to resolve thin boundary layers on the 
solid walls. A small time step, At = 27~/(1024w), i.e., 1024 
time steps per cycle, was used. Extensive convergence 
tests were carried out, and the robustness of the present 
code has been established [ 121. 

In actual computations, a steady state solution was 
acquired for a corresponding non-oscillating case (C = 0), 
which is referred to as the basic state. This solution was 
used as the initial condition in simulating the cases of 
time-varying temperature conditions (E # 0). This 
approach was adopted by previous works [l-4,12], which 
resulted in saving a considerable amount of computation 
time. 

Numerical computations were conducted for E = 0.1, 
0.5, and 1.0 with fixed values of Ra and Pr, i.e., Ru = 10’ 
and Pr = 0.7. The frequency of the wall temperature 
oscillation encompassed the range 0.1 < UJ < 1.5. Guided 
by the earlier study [12], attention was focused to the 
frequency band near the expected resonance frequency. 

Here, it is advantageous to introduce several operators. 

The mean value 4 of an oscillating property 4(t) over a 
cycle can be written as 

(8) 

The instantaneous Nusselt number, Nu(t), averaged over 
the vertical plane at x = a, is obtained as 

Nu(t),=, = 
1 a0 

S[ 
-- 

o ax 
- uO( RaPr) ’ ‘I 

1 
dp. (9) 

\-i” 

The positive sign of Nu(t),=, implies that the heat is 
transported from the right part to the left part relative to 
the vertical plane x = a. In order to assess the impact 
of the wall temperature oscillation on the heat transfer 
characteristics, the following definitions are made 

A(Nu) = 
Max {Nu(~)) - Min (Nu(t)} 

Nu, 

fort,<t<t,+~. (11) 

It is recalled that Nu, denotes the corresponding value of 
NM in the case of non-oscillating wall temperature (E = 0), 
which is Nu,[ = Nu(t = 0)] in the present numerical pro- 
cedure. G(Nu) and A(Nu) represent the gain and the 
fluctuating amplitude of heat transfer relative to the cor- 
responding non-oscillating value, respectively. The values 
of G(Nu) and A(Nu) are estimated by using solution 
during a cycle after the approximate steady periodic state 
has been reached. 

In the present study, that the values of Nu(t) are esti- 
mated at the hot wall, at the cold wall, and at the vertical 
plane (x = 0.5). For the basic-state solution (E = 0), heat 
balance (difference between the hot and cold wall Nusselt 
numbers) is satisfied within 0( 1 a-“). In the case of oscil- - 
lating wall temperature, the values of Nu estimated at the 
above three different positions show agreement with 1% 
relative error. 

3. Results and discussion 

Figure 3 depicts the temporal behavior of Nu(t) at the 
vertical mid-plane x = 0.5. For all the cases, Nu(t) settles 
down to a quasi-steady periodic form after several cycles. 
Figure 3(a) shows the results for E = 0.1. The fluctuation 
of Nu(t) at a moderate frequency ((0 = 0.67) is far more 
pronounced in comparison with the cases of small 
(w = 0.4) and large (m = 1.0) frequencies. This points 
to the presence of resonance. Following the previous 
arguments of Lage and Bejan [l] and KH [12], the res- 
onance can be identified by maximal amplification of 
fluctuation of Nu(t),=,, 5 at a certain specific frequency 
(referred to as the resonance frequency w,). The results 
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Fig. 3. Time-dependent behavior of the Nusselt number at the 
vertical mid-plane (X = 0.5). (a) i: = 0.1 : (b) E = 0.5 : (c) E = 1 .O. 

for larger amplitudes E = 0.5, 1.0 are displayed in Figs. 
3(b) and 3(c). The qualitative behavior of oscillation of 
Nu(t) is generally similar to that for e = 0.1. However, 
quantitative differences are ostensible ; the fluctuating 
amplitude of Nu(t) becomes substantially larger as E 
increases from 0.1 to 1 .O. 

The effects of E and o on the fluctuation of Nu(t) at 
x = 0.5 are scrutinized in Fig. 4, in which existence of 
resonance is discernible. For the three values of E, the 
curves of the normalized amplitude A(Nu)I& exhibit the 
sharp resonance peaks. The values of the resonance fre- 
quency, o,, at which the maximum A(Nu) occurs, are 
listed in Table 1. 

An interesting finding in Fig. 4 is that A(h) displays 
a similar parametric dependence on w. It is noticeable 
that the A(N vs. o curves for the three values of E 
exhibit a very similar trend. The results for E = 0.1 and 
E = 0.5 disclose that the influence of E on A(h)/& is 
found to be insignificant. Put it alternatively, A(h) is 
approximately proportional to c when E is small. This is 
in line with the theoretical prediction of Antohe and Lage 
[3] that the resonance amplitude of the Nusselt number 
is a nearly-linear function of the amplitude of the applied 
heat flux. Small differences are seen when E is large. 

The present results are consistent with the general dis- 
cussion on the issue of the superposing oscillation on a 
steady basic flow. In a system without damping, any 
periodic excitation with the correct natural frequencies 
of the system would give rise to an oscillation with infinite 
amplitude. In the presence of damping, the amplification 

w lo 
x 
3 

2 
5 

0 I 

A E=&l 

0:o 0:5 l:o 1:5 

0 

Fig. 4. Effects of e on the A(Nu)/e variation with w (X = OS). 

Table 1 
Summary of the present numerical simulations 

E = 0.0 E = 0.1 F = 0.5 E= 1.0 

Maximum amplification of fluctuation of A(Nu) 0.0 0.662 3.40 7.29 

Nu(t) at x = 0.5 (Fig. 4) w, -. 0.67 0.67 0.77 
Maximum gain of z (Fig. 5) G(Nu) 0.0 0.00213 0.0421 0.131 

(J)“l - 0.68 0.65 0.77 

Estimated values from the cycle-averaged S’ 0.880 0.884 0.920 1.17 
solutions [Fig. 9 and equation (12)] (UN 0.66 0.66 0.68 0.76 
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characteristics are controlled mainly by the damping 
mechanism of the system. In the present calculations, Ra 
and Pr are fixed, i.e., the viscous and diffusive dampings 
are constrained. If  E is sufficiently small so that the effect 
of the superimposed oscillations is linear, the resulting 
amplification is linearly proportional to E, without affect- 
ing ,f;. However, when I: becomes large, nonlinear 
behavior is manifest and it distorts both A(Nu) and ,f,. 
All these behaviors are shown in the present results. 

Next, the effect of E on the time-mean heat transfer 
rate is described. A careful inspection of Fig. 3(c) dis- 
closes that the temporal behavior of Nu(t) at o = 0.77 is 
almost sinusoidal but not symmetric about the value of 
Nu,. This is indicative of the fact that NM deviates from 
the corresponding value of the non-oscillating case. In 
order to confirm this assertion, the values of G(N,)/a at 
x = 0.5 are plotted versus w in Fig. 5. For E = 0.1, Nu 
remains almost unchanged from Nu, at all frequencies. 
As remarked by KH [12], the overall time-mean charac- 
teristics of natural convection remain substantially 
unchanged by the sidewall temperature oscillation when 
the amplitude of forcing is small. However, as E increases. 
the effect of E on NM becomes conspicuous. When E is 
appreciable, G(Nu) increases with c in a nonlinear manner 
(note that in the ordinate G(Nzr)ji: is plotted). As shown. 
the time-mean heat transfer rate is augmented 
measurably when the wall temperature oscillates with a 
large amplitude. The maximum gain of Nu relative to 
Nu, is approximately 4.2% (for c = 0.5) and 13.1% ( for 
i: = 1.0). 

The dependency of G(Nu) on ~1 is also illustrated in 
Fig. 5. For small o, G(Nu) has an almost constant but 
finite positive value; e.g., G(Nu) = 0.0866 for E = 1 .O and 
(u = 0.1. When w << (0,: the impacts of wall temperature 
oscillation can penetrate the full cavity [8, lo]. In this 
case, the periodic responses of natural convection can be 
deduced from a series of steady state solutions, each 
of which may be computed with a constant hot wall 

0.15 
7 

Fig. 5. Eflects of 8 on the G‘(Nu):E variation with 0, (u = 0.5). 

temperature in the range of I- i: 6 Oh 6 1 + i-:. When the 
amplitude of forcing is small, I: << 1, the time-dependent 
flow and heat transfer exhibit oscillatory behavior which 
is almost symmetric about the basic state solution (c = 0). 
However, when a is large, this argument is no longer valid. 
It is worth noting that the amount of heat transported by 
natural convection from the hot wall to the cold wall 
does not vary linearly with the temperature difference 
between the two sidewalls. Consequently, the fluctuation 
of Nu(~) is not symmetric about Nu,. These con- 
siderations offer plausible physical explanations for the 
deviation of Nlr from NM, at small frequencies (see. e.g., 
Antohe and Lage [5]). 

On the other hand. as Q increases beyond (u,, G(Nu) 
decreases with tr). As stressed in the previous works [S. 10. 
121, when (IJ >> 1, the direct effects of the wall temperature 
oscillation are confined to the vJertica1 boundary layer on 
the hot sidewall ; the fluid in the interior does not feel the 
presence of the hoc&wall temperature oscillation. Thus. 
the deviation of Nu from .VU, is small. The G(Nu) -w 
curves in Fig. 5 exhibit a secondary peak at a frequency 
which is larger than (?I,. Since the presence of a secondary 
peak is not clearly discernible in the A( Nu) -co curves in 
Fig. 4, this peak can not be interpreted conclusively as 
the existence of another distinct frequency of the system. 
This issue should be examined in detail in the forth- 
coming investigations. 

It is important to note that the maximum gain of time- 
mean heat transfer occurs at a moderate frequency in a 
band near the resonance frequency. (0,. The values of the 
frequency at which the maximum G( Nu) takes place cl),,,, 
are listed in Table 1. The present result is supportive of 
the assertion that the maximal gain of the time-mean 
heat transfer coefficient, which is observed at a moderate 
frequency, is interpreted to be a consequence of reson- 
ance. 

Another effect of large E can be found in Figs. 3(a) and 
3(b): when c is large. Nu(/) becomes negative at some 
instant during a cycle. In order to make a physical 
interpretation of this result. the A(Nu) vs. co curves for 
I: = 1.0 are shown in Fig. 6 at three representative 
locations. i.e., at the cold sidewall (.u = O.O), at the ver- 
tical mid-plane (X = 0.5), and at the hot sidewall 
(.Y = 1.0). 

The value of A(Nu)!2 at the cold wall is less than unity, 
and this is smaller than A(Nu)Q at the hot wall and at the 
vertical mid-plane. Considering that G(Nu) 5 O(lO~-‘), 
heat is always transferred out of the cavity at the cold 
wall. On the other hand. the value of A(Nu)/2 at the hot 
wall is much greater than unity. Put it alternately, the 
instantaneous values of Nu(r) can be negative. This again 
implies that heat is instantaneously transferred either into 
the cavity or out of the cavity at the hot wall during a 
cycle. Here, it is useful to follow the descriptions of KH 
[12] ; a cycle can be divided into the cooling ((I,, < 1 .O) 
and heating ((I,, > I .O) phases at the hot wall r.&tir~, to 
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0 
0.0 0.5 1.0 1.5 

w 

Fig. 6. Variation ofA(!v~) vs. oat three locations. .X = 0. I = 0.5 
and ,I = 1.0. E = 1.0. 

the mean temperature (gi = 1.0). The negative value of 
Nu(t) at the hot wall can occur when the hot wall tem- 
perature becomes lower than the fluid temperature in the 
thermal boundary layer in the cooling phase. When c = 0, 
the fluid releases thermal energy fully to the cold wall. 
However, when E > 0. there exists another choice in that 
thermal energy is partially returned to the hot wall in the 
relative cooling phase. The difference between the Nusselt 
numbers at the hot and cold walls is indicative of the 
transient thermal storage capacity of the system (see, e.g., 
Antohe and Lage [2]). As illustrated in Fig. 6 as well as 
in KH [12], A(Nu).=, increases with i: and (11, i.e., the 
latter mechanism tends to outweigh the former. In this 
case. the system has the capacity to store thermal energy 
in transient states. 

It is also discernible that A(Nu) at s = 0.5 has a peak 
value at w = u,, which is much larger than A(Nu) at the 
cold wall and at the hot wall. As a result. the Nusselt 
number at x = 0.5, has a negative value of very large 
absolute magnitude at some time instance, as shown in 
Fig. 3(c). The fluid in the cavity experiences the heat 
transport from the left half domain to the right half 
domain and vice versa periodically during a cycle. 
However, the occurrence of negative value of Nu(t) in 
the interior has a different origin: it is of convective 
nature. The maximal amplification of Nu(/) at .\- = 0.5 is 
closely associated with maximal fluctuations of the tlow 
at 01 = (0,. In particular. the negative value of ,Yu(/) at 
.X = 0.5 take places when the clockwise (CW) flow cir- 
culations are developed. which will be shown later. 

The discussion will now be centered on the resonance 
cases. In order to acquire a physical insight into reson- 
ance, detailed descriptions of the evolutions of flow and 
temperature fields over a cycle are needed. as displayed 
in Figs. 7 and 8. 

Figure 7 depicts the time-dependent flow* patterns in 
the periodic steady state over a cycle for 1: = 1.0 and 

(1) = 0.77. The sequential growth and disappearance of 
the counterclockwise (CCW) and clockwise circulations 
in a cycle are discernible. The CW and CCW circulations 
represent the influences of the relative cooling and heat- 
ing phases, respectively. During the relative heating phase 
in Fig. 7 (19 < r < 19.5), the CCW circulations are inten- 
sified with time, and the maximum strength of flow occurs 
near the time instant at which the relative heating has 
been fully accomplished. During the relative cooling 
phase (I 9.5 < T < 20), the reverse process takes place. 

Here, it is pointed out that the CW circulations as well 
as the CCW circulations grow to fill the bulk of the cavity, 
as shown in Fig. 7(a). It is noted that, for the case of 
E = 0. I, the CCW circulations dominate in the cavity at 
all time instants. When E is small, the fluctuating com- 
ponents of the flow are overshadowed by the global flow 
driven by the mean temperature difference between the 
two sidewalls [I 21. However, for i: = 1.0, the flow fluc- 
tuations at the resonance frequency are comparable to 
the flow sustained by the mean temperature difference 
between the two sidewalls. Consequently, the wall tem- 
perature oscillation with a large amplitude causes a sub- 
stantial amplification of flow. therefore, the instan- 
taneous flow differs much from the basic state. 

Sequential plots showing the evolutions of temperature 
held over a cycle are depicted in Fig. 8. It is obvious that 
the isotherms in the interior exhibit a periodic tilting over 
a cycle. This temporal behavior of the interior fluid was 
previously reported by KH [12]. although the degree of 
tilting wras smaller due to a small value of s (E = 0. I) used 
in 1121. This suggests that the resonance is associated with 
the internal gravity wave modes. It also reinforces the 
earlier assertion that the mechanism of resonance is 
largely independent of the forcing amplitude. 

The influences of a large amplitude (E = 1.0) are 
exemplified in Fig. 8. The regions of 0 > 1.0 are seen in 
the upper part of the cavity at all times throughout a 
cycle. This implies that the cycle-averaged temperature 
field deviates much from that for the case of non- 
oscillating hot-wall temperature (z = 0.0). Figures 7 and 
8 demonstrate that both the time-mean solutions and the 
instantaneous solutions are affected much by the wall- 
temperature oscillation when c is large. 

The time-mean flow patterns and temperature tields 
are acquired by averaging the time-dependent solutions 
over a cycle, which are illustrated in Fig. 9. Differences 
between the time-mean solution for E = 0.1 and the basic 
state solution (I: = 0.0) are hardly discernible. This again 
supports the assertion of KH [I?] that the impacts of 
wall temperature oscillation of small amplitude on the 
time-mean solutions are meager. However, for c = 0.5. 
both the flow and temperature fields display noticeable 
changes from the basic state. For e = 1 .O, the deviations 
from the basic state are pronounced. In particular, the 
structure of flow and temperature fields in the interior. 
rather than in the boundary layers, is significantly 
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Fig. 7. Sequential plots showing the periodic stream functions in a cycle. E = 1 .O. LI = 0.77. The time instants, r( =2rrr:to), are given in 
the figures. The contour increments are A$ = 0.004. The dashed lines indicate the negative contour values. 

changed. This, of course. is the case with a large value of 
E. As mentioned before, when E is large, the time-varying 
responses of flow and temperature fields in a cycle are no 
longer symmetric about the basic state. The asymmetric 
characteristics manifest the differences of the cycle-aver- 
aged time-mean solution from the basic state. These lead 
to the enhancement of the time-mean heat transfer rate. 

When s is large (see Fig. 4 for c = 1.0). the departure 
of the time-mean temperature field from the basic state 
provides a plausible explanation for the shift of the res- 
onance frequency toward a larger value. The present 
results shown in Figs. 4-8 are consistent with the previous 
finding of KH [12] that the flow resonates with the 
internal gravity wave oscillations. For the present con- 
figuration. Paolucci and Chenoweth [19] estimated the 
frequency of the internal wave modes. The frequency of 
the fundamental mode can be expressed, in the present 
non-dimensionalization scheme, as 

where S’( z%/~J) is a parameter indicating the overall 
strength of stratification. 

KH [12] estimated the stratification factor S of the 
basic state by using a linear fitting to the vertical tem- 
perature distribution at the horizontal mid-width plane 

of the cavity (.Y = 0.5). The predicted values of w, were 
in good agreement with the numerically-acquired values 
of ej,. In this study, S is obtained from the cycle-averaged 
solutions, rather than the basic state; S is evaluated by 
using the temperature profile in the range 0.2 d j’ < 0.8 
on the vertical plane at x = 0.5. This reflects the fact that, 
when E is large. the time-mean temperature field differs 
appreciably from the basic state. The estimated values of 
Sand (u, are listed in Table I. It is seen that w, ‘2 (0, z (u ,,,. 
The slightly larger value of the resonance frequency for 
E = I.0 is a consequence of the fact that the time-mean 
temperature field is more strongly stratified, therefore, 
the frequency of internal gravity mode has a slightly 
larger value. 

4. Conclusion 

Numerical computations have been conducted for 
natural convection in a sidewall-heated cavity with a 
time-varying temperature at the hot sidewall, 
(I,, = I -tEsin(cuf). The effects of amplitude of the wall 
temperature oscillation on the time-mean heat transfer 
and the amplifications of fluctuations of the instan- 
taneous heat transfer are investigated. 
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Fig. 8. Same as in Fig. 7 except for contour plots of isotherm<. Al) = 0.1. The dashed lines indicate the contour values 0 > 1 .O. 
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Fig. 9. Contour plots of stream functions (upper frames) and Isotherms (lower frames) (a) of the basic-state solution, and (b)-(d) of 
the cycle-averaged solutions. Ali/ = 0.001 and A0 = 0. I. 



The amplification characteristics of the fluctuation of 
the heat transfer in the interior are linearly dependent on 
i-: when E is small. When E is large, the time-mean heat 
transfer is augmented measurably from the cor- 
responding value for the case of the non-oscillating tem- 
perature condition (E = 0.0). The maximum gain of the 
time-mean heat transfer rate is seen at the resonance 
frequency at which maximal fluctuation of heat transfer 
takes place. This suggests that the augmentation of time- 
mean heat transfer is a consequence of resonance. 

Although the influences of E are discernible both in 
the time-mean and instantaneous flow and temperature 
fields, the basic mechanism of resonance is largely inde- 
pendent of the amplitude of thermal forcing. The evol- 
utions of flow and temperature fields over a cycle and the 
theoretical predictions based on the analyses of the cycle- 
averaged temperature fields indicate that the flow res- 
onates with the internal gravity-wave oscillations. 

In this study. attention is limited to the special case of 
Rn = IO’ and Pr = 0.7 to concentrate on the amplitude 
effect on the time-mean heat transfer. Due to the sen- 
sitivity of the natural convection to inertial effects, the 
cases with different Ra and Pr will be of interest. Another 
restriction is that the present study is performed under 
the Boussinesq-fluid approximation which may not be 
valid in the case of large E or AT. It is also stressed that 
the non-Boussinesq effects are known to influence the 
oscillatory modes of the basic-state flow. Subsequent 
efforts to resolve these issues are being planned for future 
work. 
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